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The high spatial variability of estuaries poses a challenge for characterizing estuarine water quality. This problem was 
examined by conducting monthly high-resolution transects for several water quality variables (chlorophyll a, suspended 
particulate matter and salinity) in San Francisco Bay (California, U.S.A.). Using these data, six different ways of choosing 
station locations along a transect, in order to estimate mean conditions, were compared. In addition, 11 approaches to 
estimating the variance of the transect mean when stations are equally spaced were compared, and the relationship 
between variance of the estimated transect mean and number of stations was determined. The results provide guidelines 
for sampling along the axis of an estuary: (1) choose as many equally-spaced stations as practical; (2) estimate the variance 
of the mean jj by var (y3=(1/10n2)C,”,, (yj-yj- 1)2, where yl, . . ., y, are the measurements at the n stations; and ( 3 )  
attain the desired precision by adjusting the number of stations according to var(y30:l/n2. The inverse power of 2 in the 
last step is a consequence of the underlying spatial correlation structure in San Francisco Bay; more studies of spatial 
structure at other estuaries are needed to determine the generality of this relationship. 0 1997 Academic Press Limited 
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Introduction 

Estuaries present unusual difficulties in characterizing 
the spatial distributions of the properties that collec- 
tively define water quality- nutrients, dissolved gases, 
trace contaminants, suspended sediments, salinity and 
plankton populations. Large-scale patterns of spatial 
variability include the longitudinal salinity gradient 
along the continuum between the estuarine drainage 
basin and the coastal ocean. Superimposed onto this 
trend are sources of smaller-scale spatial variability, 
including distributed point sources; features of water 
circulation such as fronts, eddies or convergences that 
create localized turbidity maxima (e.g. Peterson e t  aZ., 
1975); patchiness resulting from irregularities in 
bottom topography (e.g. Powell et al., 1986); and 

logically-mediated spatial differences in processes 
ch as primary production and biogeochemical 

transformations of reactive constituents (e.g. Jassby 
al., 1993; Cloern, 1996). Many of these sources 

tial Variability are unique to  or amplified for 

At the same time, by virtue of the large human 
populations often associated with estuaries, anthropo- 

mpacts on water quality are strong and the need 
aracterizing ambient conditions and temporal 

trends in these conditions is correspondingly urgent. 
The  variability inherent in estuaries implies that a 
greater sampling effort is often necessary to  describe 
water quality adequately, compared to other aquatic 
systems. The  question of how to sample the spatial 
extent of estuaries most efficiently arises naturally, 
whether the objective is to  describe current conditions 
or temporal trends in these conditions. Historically, 
most station configurations in estuaries, and arguably 
in most other aquatic ecosystems as well, have been 
chosen on the basis of surface physiographic features 
or by a cursory knowledge of spatial heterogeneity. 
These configurations may very well turn out to be 
near-optimal in some useful sense, but there is no  way 
to tell without a more objective approach. 

This paper considers the general question: how 
should samples be taken in an estuary or subembay- 
ment so that regional properties (e.g. mean concen- 
tration or mean population abundance) can be 
compared from one time period to  another or from 
one subregion to another? Although this is perhaps the 
simplest form of trend detection (the underlying goal 
of most monitoring and assessment programmes), it is 
a significant issue for several reasons. First, for certain 
important water quality variables, the regional 
(estuary-wide) or subregional (subembayment) mean 
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provides an informative scalar index of ambient 
conditions. We want to know, for example, if the 
trophic state of an estuary (as indexed by chloro- 
phyll a)  is exhibiting a positive temporal trend, or if a 
trace contaminant is higher in one subembayment 
than another. Second, use of the mean enables one to 
connect empirical observations in the estuary to a 
large body of results from sampling theory and geo- 
statistics. This connection supports the aim of provid- 
ing a conceptual framework for both understanding 
the observations and generalizing them to other water 
bodies. Finally, the regional and subregional means 
provide an important way of communicating estuarine 
conditions to the public and environmental managers, 
precisely because the mean is so simple and widely 
understood. 

The answer to the question posed here depends on 
the (usually unknown) spatial structure of the water 
quality measurements of interest. As spatial structure 
differs among the different components of water qual- 
ity (Powell et al., 1989), the present work followed the 
lead of previous estuarine studies (Madden & Day, 
1992; Childers et al., 1994) in choosing three separate 
but complementary water quality indicators: salinity, 
suspended particulate matter (SPM) and chlorophyll 
a. Salinity is a conservative tracer of mixing along the 
river-ocean continuum and therefore a surrogate for 
longitudinal processes. Suspended particulate matter, 
strongly affected by rapid exchange between the water 
column and bottom sediments, is a surrogate for 
vertical processes. Chlorophyll a, a measure of phyto- 
plankton biomass and a representative non- 
conservative constituent that quickly responds to 
spatially-variable sources and sinks, often reflects 
lateral processes (Huzzey et al., 1990). As the spatial 
structures of these different components change 
with time, the measurements were repeated at 
monthly intervals. The sampling programme was 
conducted over an annual period in San Francisco 
Bay, a complex estuarine system that exhibits all 
modes of spatial-temporal variability expected in 
shallow coastal ecosystems influenced by tidal, 
wind, riverine and anthropogenic effects (Cloern & 
Nichols, 1985). 

Site description 

The San Francisco Estuary or ‘ Bay-Delta ’ consists of 
a landward, tidal freshwater region known as the Delta 
and a seaward region known as San Francisco Bay 
(Figure 1).  The Delta is a highly dissected region of 
channels and islands where the Sacramento, San 
Joaquin and other rivers coalesce and narrow as they 
flow westward. The outflow from the Delta passes 

through a narrow notch in the Coast Range into a 
series of subembayments, and ultimately through a 
narrow deep trough-the Golden Gate-into the 
Pacific Ocean. Four major subembayments are 
usually recognized: South, Central, San Pablo and 
Suisun Bays. Together they constitute San Francisco 
Bay, the largest coastal embayment on the Pacific 
coast of the United States. Ninety percent of the 
freshwater input into the Bay flows through the Delta 
from regional drainage; the remainder is supplied by 
local tributaries. The drainage basin of the estuary 
encompasses 40% of California’s land area. River 
inputs are highly seasonal, consisting of rainfall during 
autumn and winter, and snowmelt during spring and 
early summer. In addition to this dependence on 
climate, flow is affected by a series of upstream 
reservoirs that are managed for agriculture, power, 
flood control and repulsion of salinity intrusions. A 
large portion of the flow reaching the Delta is diverted, 
mostly for agricultural purposes, before it can reach 
the Bay. 

Water quality problems in the Bay-Delta are multi- 
ple, complex and linked in various ways. A major 
underlying issue is management of freshwater inflow, 
which affects estuarine population abundances both 
directly, through transport, and indirectly, through 
effects on salinity and other variables (Jassby et al., 
1995). Contaminants include sediments and metals 
introduced from mining operations, domestic sewage, 
persistent and toxic trace substances from industrial 
discharge and urban runoff, and biocides in agricul- 
tural drainage (Davis et al., 1991). Occasional high 
chlorophyll concentrations and threats of harmful 
algal blooms are also of concern (Jassby et al., 1994). 
Several large monitoring efforts are in place with 
the goals of assessing existing water quality, determin- 
ing trends in trace contaminants and population 
abundances, and exploring the underlying causal 
processes. The size of these programmes, the social 
importance of the water quality problems and 
the extreme variability of the estuary all demand a 
closer and more objective examination of the sampling 
effort. 

General approach 

This paper considers here only the longitudinal varia- 
bility along the central channel that connects the 
seaward and landward domains of the San Francisco 
Bay system. By using variables that together reflect all 
three spatial dimensions, however, these observations 
in the estuarine channel encompass processes occur- 
ring upstream, in adjacent marshes and lateral shoals, 
due to point source discharges, and within the local 
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FIGURE 1. San Francisco Bay. The MIDAS cruise track is shown as a solid line along the axis of the estuary. 

water column proper. The specific goal is to choose a 
minimal number of sampling locations along the 
transect horn which one can estimate a scalar index of 
conditions (in this case, the mean) with sufficient 
precision (i.e. with sufficiently low variance) that 
useful comparisons can be made among different time 
periods. 

Deciding on a station array requires consideration 
of three linked issues, addressed here in sequence: 

(1) What kind of sampling design should be 
adopted (e.g. random, systematic or stratified)? 

(2) How can the precision (variance) of the transect 
mean be estimated? 

(3 For a prescribed level of precision, how many 
samples (stations along a transect) are required? 

Answers to these questions require knowledge 
about the underlying distribution of the parent popu- 

lation of all possible samples. The authors' approach 
is empirical and is not driven by theoretical assump- 
tions about the underlying distribution. Although it is 
impossible to sample the entire population of water 
quality measurements in an estuary, a surrogate 
parent population can be acquired by collecting a 
large number (thousands) of samples as closely- 
spaced sensor measurements made while a ship pro- 
files an axial transect. A modified version of the 
integrated software-instrument package MIDAS 
(Multiple Interface Data Acquisition System; Walser 
et al., 1992; see also Madden & Day, 1992) was used 
to collect and store measurements from flow-through 
water quality sensors and a Global Positioning System 
(GPS) navigation system. Subsampling from the high- 
resolution MIDAS transect data was then used to 
address the issues listed above. 
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We begin with a consideration of the spatial sam- 
pling design (Issue #1). In simple random sampling, 
each station is selected randomly and independently 
in space along the transect line. Although simple in 
concept and obviously unbiased, random sampling 
has an important drawback in situations where 
the spatial correlation is high; if two stations are 
randomly chosen too close together, then they will 
have similar values and one of them is, to a certain 
extent, wasted. 

Systematic sampling, i.e. equidistant spacing of 
stations along the transect line, avoids this problem 
and therefore yields a more precise estimate of the 
spatial mean in many situations (Murthy & Rao, 
1988). A more precise estimate of the spatial mean 
implies, in turn, that temporal trends of a given 
size can be detected in fewer years or, alternately, 
that smaller temporal trends can be detected in any 
given time interval. Systematic spatial designs are 
also more convenient to implement. Systematic 
samples suffer, however, from a serious drawback in 
that unbiased estimates of precision are unavailable, 
and approximations based on assumptions about 
the nature of the underlying population must be 
utilized (Bellhouse, 1988). The precision cannot 
be estimated based on the sampling design alone 
because a systematic sample is essentially a random 
sample of size one; once the first station is selected, 
the locations of the others are completely specified as 
well. Furthermore, systematic sampling does not 
always yield the most precise estimates; the relative 
performance of different designs depends on the 
structure of the underlying population (Cochran, 
1977). 

Stratified sampling refers to, in this case, dividing a 
relatively heterogeneous estuary into more homo- 
geneous subdomains and then carrying out either a 
random or systematic programme of sampling inde- 
pendently within each subdomain (stratum). Insofar 
as the within-subdomain variability is reduced relative 
to the between-subdomain variability, stratification 
can lead to a more precise estimate of the mean 
than either simple random or systematic sampling 
(Cochran, 1977). The strong spatial correlation char- 
acteristic of estuaries (Powell et d., 1986) suggests 
that stratification of sampling into spatially contiguous 
subregions might be appropriate. In order to choose 
the strata in a consistent way, a novel method is 
employed here; the machinery of tree-based modelling 
(Clark & Pregibon, 1992). 

The MIDAS transect data enable one to evaluate 
the relative performance of these different sampling 
designs. In particular, simple random sampling, sys- 
tematic sampling and their stratified counterparts, 

stratified random and stratified systematic sampling, 
are compared. 

As suggested above, if systematic sampling turns 
out to give the most precise estimate of the underlying 
mean, one must decide how the variance of the 
estimate can best be calculated from the low- 
resolution station arrays commonly encountered in 
practice (Issue #2). Many different estimators have 
been proposed, most of which are based on an as- 
sumed model of population behaviour and so are 
appropriate only when the model truly represents the 
population. Whether or not a single tractable model 
can be applied to estuarine data in general is not 
known. At different times and locations, transects 
appear to be dominated by noise, linear or higher- 
order trends, persistence (spatial autocorrelation) or, 
most often, a complex combination of these basic 
patterns. When only low-resolution samples are avail- 
able, there is little hope of identifying a suitable 
model. The authors’ intention is, therefore, to assess 
the robustness of the different estimators for use when 
high-resolution data are not accessible, given that the 
appropriate model may be temporally sensitive. Sub- 
sets of these methods have been compared for demo- 
graphic (Wolter, 1984) and stereological (Mattfeldt, 
1989) data but their relative performance cannot be 
extrapolated to natural ecosystems, which can exhibit 
quite different population structures. Again, the MI- 
DAS data enable a direct assessment of the different 
variance estimators by providing high-resolution de- 
scriptions of the underlying populations in an estuary. 

Given a sampling design and a way to estimate the 
resulting precision, how does one choose an appropri- 
ate number of stations (Issue #3)? The use of some 
criterion of performance or objective function is 
an essential step in completing this phase of design, 
but the criterion depends on the overall monitoring 
objective (e.g. to describe ambient conditions, assess 
compliance with standards, detect trends or determine 
causal mechanisms) and the costs and uncertainties 
associated with different designs. Rather than linking 
this analysis to a specific objective function, it was 
asked how the ability to reproduce the underlying 
data, as measured by the variance of the estimated 
mean, depends on the number of stations. This rela- 
tion is simple enough to calculate with a high- 
resolution data set in hand, but of specific interest is 
what can be said when the only data available are from 
sparser transects (i.e. the usual kind of data collected 
in monitoring programmes). Therefore, one should 
look for generalities in the relation that may be char- 
acteristic of the underlying spatial structure in an 
estuary, and can be used to guide sample size when 
only low-resolution data are available. 
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FIGURE 2 .  Freshwater outflow hom the Sacramento-San 
Joaquin Delta into San Francisco Bay. -, water year 
1995 (I October 1994-30 September 1995); -, average 
for the water years 1956-95; r, cruise dates. 

Methods 

Data collection 

Ten cruises were conducted from November 1994 
through September 1995 at approximately neap tide, 
collecting data along a 150 km transect in the main 
channel of San Francisco Bay from the landward end 
of South Bay through Central Bay to Rio Vista on the 
Sacramento River (Figure 1). The timing of the 
cruises captured the broad range of freshwater flow 
conditions experienced over the year (Figure 2), as 
well as major events such as the spring bloom in South 
Bay and summer estuarine turbidity maximum in the 
northern Bay. Peak flows during the 1995 water year 
were among the highest of the last 40 years; the range 
of flow conditions encountered during these transects 
is therefore unusually large compared to an ' average 
water year ' (Figure 2). 

Fourteen hydrographic, meteorological and naviga- 
tional variables were measured using the Multiple 
Interface Data Acquisition System (MIDAS) on 
board the RV Polaris. The ship's location was 
determined with a Trimble NavTrac XL Global 
Positioning System. Water for the hydrographic 
parameters was pumped from a through-hull fitting 
located at the bow of the ship at a depth of approxi- 
mately 2 m. The pumped water sample was directed 
through an array of sensors for continuous analysis. 
The hydrographic variables were measures of salinity, 
temperature, chlorophyll fluorescence and turbidity. 
Salinity was derived from measures of conductivity 
and temperature made using a Sea-Bird Electronics 
SBE-2 1 thermosalinograph. Temperature was 
measured with a Sea-Bird Electronics SBE-3 
temperature probe located at the bow of the ship in 
the pumped sample stream, chlorophyll fluorescence 
with a Turner Designs Model 10 flow-through fluor- 
ometer, and turbidity with a Turner Designs Model 
10 flow-through nephelometer. 

Discrete water samples for chlorophyll a and SPM 
were collected at 10-18 selected stations during the 
ongoing recording of fluorescence and nephelometry 
data signals (Edmunds et al., 1995). Samples for 
chlorophyll were filtered onto a Gelman A/E glass 
fibre filter and immediately frozen, The air-dried 
filter was ground in 90% acetone within 1 week of 
collection. After extraction for 18-24 h at - 10 "C, 
absorbances of the extracts were determined on a 
Hewlett-Packard 8452A diode array spectrophoto- 
meter. Chlorophyll a values were calculated using 
Lorenzen's (1967) equations. Samples for SPM were 
filtered onto preweighed, 0.4-pm pore size, poly- 
carbonate membrane filters and then air dried. The 
filters were reweighed and the concentration of SPM 
calculated after a correction was made for salt on the 
filters. The fluorescence and nephelometry signals 
were calibrated separately for each cruise using the 
discrete values collected during that cruise. For the 
first three cruises and the July cruise, the authors were 
unable to obtain significant regressions of the MIDAS 
fluorescence signal on discrete chlorophyll values. 
Fluorescence data were not used in the analyses. 

The MIDAS data acquisition system records the 
data at a sampling interval of approximately 6 s. The 
ship's speed over ground varied with the tides but was 
generally about 5 m s ~ (1 0 knots), which resulted in 
a spatial sampling interval of approximately 30 m. 
During each transect from South Bay to Rio Vista, 
approximately 5000 measures of each parameter were 
collected. The average distance between successive 
data points in the raw database was approximately 
30 m, but the actual distances were variable because 
of changing ship speed. The implementation of tree- 
based regression used here is sensitive to the data 
density (data points per km of transect), and changes 
in this density over the course of the transect can bias 
the analysis. In order to equalize the data density 
over the transect, a subset of the data was formed 
by marking the transect at 100-m intervals measured 
along the transect from the starting point, and 
selecting the single data record closest to each marker. 

Horizontal stratiJcation of the estuay 

Stratification calculations. To compare the different 
sampling designs, the estuary must first be stratified. 
Tree-based modelling or regression operates by suc- 
cessively splitting a dataset (transect) into increasingly 
homogeneous subsets or strata until some stopping 
rule comes into effect. In this case, each split is chosen 
to maximize the difference between the variance of the 
' parent ' stratum and the sum of the variances of the 
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two ‘ children ’ strata. As different transects and vari- 
ables result in different splits, a further step is to 
extract from the combined collection of splits those 
regions where they tend to cluster and collectively 
support the placement of a boundary. Tree-based 
modelling therefore serves more as a guide to the 
location of strata boundaries rather than an exact 
specification of these boundaries. 

Trees were ‘grown’ using the algorithms of 
S-PLUS (Clark & Pregibon, 1992; Statistical 
Sciences, 1994). Each transect was successively split 
along the transect path in order to maximize the 
quantity AD: 

where yi is the ith observation in the parent stratum; p 
is the mean value of the parent stratum; L and R are 
the sets of indices defining the left-hand and right- 
hand children strata, respectively; and p L  and pR are 
the mean values in the two respective children strata. 
The splitting process continued until none of the 
resulting strata could account for more than 10% of 
the original variance. Strata were then compared 
among variables for the same transect and among 
transects for the same variable. The value of 10% was 
chosen because smaller values resulted in strata that 
were probably dependent on tidal stage. For example, 
the splits computed for two successive transects on 18 
and 19 January 1995 (beginning at the same time of 
day but at opposite ends of the Bay) essentially 
coincided if 10% was used as a cutoff; on the other 
hand, splits that resulted in strata accounting for less 
than 10% of the original variance did not coincide. 

Sample allocation among strata. In order to test the 
efficacy of a stratification scheme, one must also 
decide how to allocate samples among the various 
strata. This can be done in several different ways. The 
simplest method is proportional allocation, in which the 
number of samples in any stratum is directly propor- 
tional to the stratum size. Stratum size in the case of 
a MIDAS transect is simply the length along the 
transect between stratum boundaries. 

In contrast to proportional allocation, the most 
efficient or optimal allocation of stations among strata 
takes into account stratum variability and sampling 
costs, in addition to stratum size. For any stratum i of 
a transect, the number of stations that minimizes the 
variance of the estimated mean for a given total cost is: 

wisi 
ni cc7 

J c i  

where Wi is the stratum size, Si is the stratum standard 
deviation and ci is the cost per sample in that stratum 
(Cochran, 1977). If the cost of sampling a station is 
constant throughout the estuary, then Equation 2 
implies that the density of stations within a stratum is 
simply proportional to the standard deviation of the 
transect variable. 

Due to the potential discrepancy in optimal alloca- 
tions for different variables (due to different values of 
Si), the efficacy of a compromise allocation among 
strata was also examined. The compromise was 
effected by minimizing the average over all three 
variables of the proportional increase in variance over 
optimal allocation (Chatterjee, 1967). It can be shown 
that the resulting sample sizes are: 

(3)  

where nii is the optimum sample size in stratum i for 
variable j .  

Sampling design 

The variance of the mean was calculated for several 
different practical sampling strategies, and compared 
to simple random sampling. The authors’ approach 
was to regard the MIDAS transect data as the under- 
lying population. The variance of the simple random 
sampling estimate is then given by: 

where S is the population standard deviation, n 
is the sample size, and f=nlN is the sampling fraction 
with N the population size (Cochran, 1977). In 
practice, n will be much less than 75 and N is 
usually around 1500, so the true sampling fraction is 
much less than 5%. As a rule of thumb, the finite 
population correction (1-f) can be ignored when 
fc0.05 (Barnett, 1991), and it will be ignored in what 
follows. 

For stratified random sampling, the variance of the 
estimated mean depends on the sample allocation 
strategy. In the case of proportional allocation, the 
variance is: 

(5) 
l h  
n i z l  

var(jjs,,,> =- 1 WiSf 

where Wi is the relative size and Si is the standard 
deviation of the ith stratum, and there are h strata. For 
optimal allocation, the corresponding calculation is: 
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The variance for a compromise allocation can be 
determined from the general result for stratified 
samples, which can be expressed in the form: 

1 w;s; 
var ( j j s t )  = - - 

n i , l  cli 
(7) 

where ni=nay 
The traditional station configuration in San 

Francisco Bay has been an approximately systematic 
one, i.e. with equal distances between adjacent 
stations. Assuming N is a multiple of n, there are 
m=Nln possible systematic samples. When N was 
not a multiple, the method of circular systematic 
sampling due to Lahiri (Bellhouse, 1988) was used. 
The variance of the systematic estimate is then simply: 

1 
var(jj,,)=- 1 (Yk-P) ’  

m k = t  

where pk is the mean of the kth potential systematic 
sample and p i s  the transect mean. 

Finally, the performance of stratified sampling with 
proportional allocation was investigated again, but 
with systematic rather than simple random sampling 
within strata. Variances within strata are then given by 
Equation 8, but the variance of the estimated overall 
transect mean is: 

where var(jjJ is the variance for the estimated mean of 
stratum i. 

Each sampling strategy was compared to simple 
random sampling by calculating the percent decrease 
in variance lOO(1 - V/V,,), where V,, is the variance 
given by Equation 4 and V is the variance due to 
one of the other strategies. For stratified random 
sampling, n drops out and the comparisons are 
independent of sample size. For systematic and strati- 
fied systematic, however, the ratio depends on n 
and so the results for three sample sizes (10, 20 and 
40), typical of the range for transects in estuarine 
research and monitoring programmes and specifically 
covering the range used in San Francisco Bay, were 
examined. 

Variance estimators 

A variety of estimators that have been proposed for 
systematic sampling and that are simple to compute 

were examined (Table 1). The first estimator SRS is 
simply the variance of the simple random sampling 
estimate (Equation 4). Estimator MURTl considers 
the systematic sample as a stratified random sample 
with two samples from each of nI2 strata; MURT2 is 
similar but based on successive differences (Murthy 
& Rao, 1988). The next three estimators are based 
on higher-order differences; WOLTl and WOLT2 
attempt to account for trends and WOLT3 for auto- 
correlation (Wolter, 1984). The estimator KOOP 
consists of a pseudo-replication in which the sample is 
split into two systematic subsamples (Koop, 197 1). 
The next three estimators also attempt to take into 
account the spatial correlation structure of the popu- 
lation. Estimator COCH is an asymptotic result due to 
Cochran (1 946) and assumes an autoregressive pro- 
cess of order one; estimators CHEV (Yates, 1960; 
Chevrou, 1976) and GUND (Gunderson & Jensen, 
1987) are based on regionalized variable theory 
(Mattfeldt, 1989). CHEV was developed specifically 
for error estimation in linear systematic arrays, while 
GUND is based on a quadratic approximation to the 
variogram. The final estimator MAHA is based on 
two independent systematic samples of size nl2, a 
technique known as the method of interpenetrating 
subsamples (Mahalanobis, 1946). 

The estimators for sample sizes of 10, 20 and 40 
stations were compared. For a given sample size, 
hydrographic variable and transect, each estimator 
was applied to all possible systematic samples, and the 
performance of an estimator was summarized with the 
mean square error MSE: 

MSE(v)  = E [  (z, - var(g)) 2] (10) 

Results for all transects, for a given sample size and 
variable, were then averaged and ranked. 

Sample size 

The relation between variance and sample size was 
demonstrated empirically by computing varO (Equa- 
tion 8) from all possible systematic subsamples for a 
range of sample sizes, specifically 5 through 50. This 
range encompasses the number of fixed stations likely 
to be encountered in practice. The calculation was 
repeated for each transect and variable. The relation 
was assumed to be of the form: 

and estimates of a were extracted using the Golub- 
Pereyra algorithm for partially linear models (Bates & 
Chambers, 1992). 
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TABLE 1 .  Estimators of variance for systematic sampling 

Estimator Description 

1 SRS 

2 MURTl 

3 MURT2 

4 WOLTl 

5 WOLT2 

6 WOLT3 

s2/n, where ~ ~ = X ~ = , ( y ~ - j j ) ~ / ( n -  1) 

( l/n)C~!!,u~j/n, where uj=yi-y.  1- 1 

(l/n)Xl,,uj2/2(n- l ) ,  where uj=yj-yj- ,  

(l/n)X;=,b;/6 ( n  - 2 ) ,  where bj=yj -  2yj- +yj-* 

(l/n)C;=,c;/35 ( n -  4) ,  where cj=yj/2-yj-  , +yj- , -y j -  , 
(l/n)Cj”=,dj2/7.5(n-8), where dj=yj/2-yj- ,+. . . - ~ ~ - , + y ~ - ~ / 2  

(114) { ( 2 / n ) C j  ,v,nYj- (2/n)Cj OddYj)’ 

8 COCH 

9 CHEV 

(s2/n) (1 + (2An p )  +2/(p-’ - 1) 3 ,  where p=C~=,(y- j j ) (y , - ,  - y ) / { s 2 ( n -  I )}  

( l/n) CJ= ,u;/1 On, where uj =yj -yj-  

10 GUND ( l h )  {SC; ,  + C,”,,yjyj-, - 4Z,j”I,yjyj- 1}/12 

11 MAHA 

The sample is denoted by y], j = 1,2, . . . ,n. 

( 1/2) C;= (~7, -4) 2, where j j i  are means of independent samples of size d 2  

The relation between variance and sample size 
is also a relation between variance and interstation 
distance. In order to portray how variance changes 
with spatial scale, as opposed to sample size, var(y3 
(Equation 8) was computed from all possible 
systematic subsamples for station separations of 
1-64 km. 

DuBr SBSh BBr RSP Mare Avon Chip SacR 

. . .  . . .  . . .  . . .  , , .  
I , I  , , .  

Results 

Horizontal stratijcation of the estua y 

The transect data are essentially one-dimensional and 
so are best portrayed as a function of distance 
measured along the transect. In order to simplify the 
presentation, the main points regarding stratification 
are illustrated with results from two cruises (Figures 3 
and 4). The first feature to note is that the strata 
chosen can differ among variables for the same cruise. 
For example, chlorophyll a exhibits near-homogeneity 
between the Bay Bridge and Sacramento River on 4 
April 1995, while four smta have been ans?ouled to 
SPM in this same region (Figure 3). Secondly, and in 
a similar vein, the strata can differ among cruises 
for the same variable. For example, five strata are 
required to describe chlorophyll a on 4 April 1995 

. .  

. . ,  

0 50 100 150 
’kansect Xistance ikmj 

FIGURE 3. MIDAS transects with tree-based model suDer- 
imposed for 4 April 1995. DuBr, Dumbarton Bridge; SBSh, 
San Bruno Shoal; BBr, Bay Bridge; PtSP, Pt. San Pablo; 
Mare, Mare I.; Avon, Avon Pier; Chip, Chipus I.; SacR, first 
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DuBr SBSh BBr PtSP Mare Avon Chip SacR 

Transect distance (km) 

FIGURE 4. MIDAS transects with tree-based model super- 
imposed for 21 September 1995. DuBr, Dumbarton Bridge; 
SBSh, San Bruno Shoal; BBr, Bay Bridge; PtSP, Pt. San 
Pablo; Mare, Mare I.; Avon, Avon Pier; Chip, Chipps I.; 
SacR, first Sacramento R. Station; SPM, suspended particu- 
late matter. 

(Figure 4). Finally, strata boundaries do not necess- 
arily demarcate homogeneous regions, but may occur 
in the middle of a strong spatial gradient, such as the 
one for salinity on 21 September 1995. These 
three features illustrate that an estuarine model of 
variable-independent, temporally stable and homo- 
geneous subdomains can be a poor approximation. 
The subdomains defined by tree-based regression, 
which turn out to be the appropriate ones for stratified 
sampling (see below), change among variables and 
seasons. Furthermore, the frequent presence of large 
gradients over much of the estuary contradicts the 
very notion of homogeneous subdomains. 

Although the model of homogeneous subdomains 
may be in some sense a poor one for this estuary, the 
model need not fit perfectly in order for improvements 
in estimating the overall mean. The only require- 
ment is that the typical within-stratum variance 
is sufficiently small compared to the variance of the 
within-stratum means (Barnett, 1991). Further- 
more, indicating the positions of splits but not their 
importance does not fully characterize the results 
and may bias one’s view of the efficacy of strati- 

fication. In order to test its efficacy more object- 
ively, one needs to decide on a compromise stratifi- 
cation that summarizes the commonalities among 
the tree-based regressions for individual cruises and 
variables. 

For each variable, the positions of the splits for all 
cruises were superimposed on the cruise track (Figure 
5). Each split of a stratum is represented by a square, 
the area of which is proportional to the total variance 
represented by that stratum. Major splits for chloro- 
phyll a are situated near the Dumbarton Bridge, the 
San Bruno Shoal and Angel Island. For SPM, the 
major boundaries are in the vicinity of the Dumbarton 
Bridge, Angel Island and in northern San Pablo Bay. 
Salinity is stratified most strongly near Angel Island, 
northern San Pablo Bay and Martinez. Most of these 
locations coincide with important physiographic and 
hydrological features (Figure 1). The Dumbarton 
Bridge marks a significant constriction in southern 
South Bay; the San Bruno Shoal is a large shallow 
expanse that is also a hydrodynamic and biological 
boundary (Powell et al., 1986); Angel Island marks 
the southern boundary of the river-dominated portion 
of the estuary, where the flow from the Sacramento 
and San Joaquin Rivers turns westward and exits 
through the Golden Gate; and Martinez. marks the 
upstream boundary of the Carquinez Strait, a narrow 
constriction in the northern Bay. A number of major 
boundaries cluster toward the northern end of San 
Pablo Bay, but do not clearly demarcate any single 
position. The ‘lability’ in this region is due to the 
strong gradients often present in San Pablo Bay. 
Rather than situating a boundary at some location in 
the centre of these splits that has no physiographic or 
hydrodynamic significance, the authors chose to 
locate a boundary at Mare Island, which marks the 
northern end of these splits and the seaward boundary 
of the Carquinez Strait. 

In this way, all the boundaries have a physiographic 
or hydrodynamic significance. The exact boundaries 
of the six strata are defined in Table 2 .  Note that 
stratum size (length) changes slightly among transects 
because of small differences in the actual course taken 
by the ship. The means and standard deviations of 
water quality variables for each stratum and transect 
are summarized in Table 3. 

Proportional allocation of stations is the same for all 
variables, and simply mirrors stratum size (Table 4). 
Optimal allocation, on the other hand, differs greatly 
among variables for most strata, indicating that there 
is no general optimal allocation. The compromise 
allocation resembles the proportional allocation 
although, based on their covariance among strata, it is 
most similar to the optimal allocation for chlorophyll. 
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to the decrease in deviance due to the split. (a) Chlorophyll a; (b) suspended particulate matter; (c) salinity. 

Sampling design case of salinity but substantial for all variables (Table 
In the case of stratified random sampling, propor- 5). Optimal allocation exhibited further increases 
tional allocation showed large increases in precision in precision in all cases, eliminating 23-45% of 
compared to simple random sampling, largest in the the remaining variance. The compromise allocation, 

TABLE 2. Definition of a stratification scheme for the MIDAS transects in San Francisco Bay 

Stratum 
no. Description 

Size f SD Northing Easting 
(km) (W (km) 

1 South of Dumbarton Br. 6.9 f 0.3 <151*4 
2 Dumbarton Br. to San Bruno Shoal 23.3 f 0-6 151.4-165.3 

4 Angel I. to Mare I. 37.3 & 2.2 2 188.8 <564*6 
5 Mare I. to Martinez. 13-1 f 1-1 2 188.8 564.6-574.5 
6 East of Martinez 51.8 f 1.7 2 188.8 2 574.5 

3 San Bruno Shoal to Angel I. 28.7 f 0-7 165.3-188.8 

Locations are specified in terms of UTM coordinates. 
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TABLE 3. Mean f standard deviation of water quality variables within each stratum of Table 2 

Stratum number 

1 2 3 4 5 6 

29 November 1994 
Salinity 
SPM 
Chl a 

Salinity 
SPM 
Chl a 

Salinity 
SPM 
Chl a 

Salinity 
SPM 
Chl a 

4 April 1995 
Salinity 
SPM 
Chl a 

2 May 1995 
Salinity 
S PM 
Chl a 

Salinity 
SPM 
Chl a 

18 July 1995 
Salinity 
SPM 
Chl a 

Salinity 
SPM 
Chl a 

Salinity 
SPM 
Chl a 

18 January 1995 

7 February 1995 

7 March 1995 

13 June 1995 

16 August 1995 

21 September 1995 

28.5 f 0.5 
62.8 f 10.6 
1.82 f 0.08 

19.7 f 1.3 
27.2 f 14-1 
1.46 f 0.04 

15.5 f 0.2 
4.57 f 0.96 
1.44 f 0.01 

15.1 f 0.3 
47.6 f 3.8 
38.1 f 2.0 

6.82 f 0.34 
59 f 16 

11.5 f 1.5 

1 4 f O  
95.3 f 37.2 
13.6 f 6.6 

13.6 f 1.3 
634 f 145 

6.97 f 1.92 

20.4 f 0.4 
19.1 f 5-2 
2.46 f 0.09 

22.5 f 0.3 
32.7 f 5.5 
6.31 f 1.2 

22.6 f 0.9 
26.3 f 19.4 
4.94 f 1-35 

30.4 f 0.4 
24.9 f 10.8 
2.08 f 0.07 

19.6 f 1.7 
1.19 f 2.78 
1.53 f 0.01 

15.4 f 0.6 
5.34 f 0.68 
1.45 f 0.02 

17.5 f 1.0 
28-5 f 9-9 
28.1 f 6.5 

9.03 f 1.00 
23 f 7 

8.12 f 1.42 

16.2 f 1.4 
34.4 f 13.4 
3.41 f 2.05 

17.5 f 0.9 
85.7 f 101 

2.63 f 0.529 

22.2 + 0.7 
5.38 f 4.07 
2.27 f 0.13 

24.1 f 0.7 
10.5 f 6.3 
1.23 f 1.10 

26.2 f 1.0 
5.78 f 2.21 
1.92 f 0-52 

30.3 f 0.1 
6.75 f 1.57 
2.02 f 0.08 

14.8 f 1.8 
1.53 f 2.26 
1.54 f 0.01 

13.4 f 1.3 
4.91 f 2.43 
1.51 f 0.02 

20.1 f 1.1 
9.72 f 2.96 
10.5 f 5.6 

11.5 f 1.2 
10.8 f 5.4 
8.74 f 5.16 

18.9 4 1.7 
18.5 f 10.2 
5-28 f 4.03 

21.6 f 1.5 
14.9 f 28.9 
2.18 f 0.12 

24.8 f 0.8 
2.54 f 1-01 
2.22 + 0.16 

27.1 f 1.1 
3.67 f 1-08 
0-9 f 1.6 

27.8 f 1.0 
1.48 f 1.05 
1.44 f 0.36 

27.4 f 2.4 
20.3 f 13.3 
1.70 f 0.10 

6.01 f 4.76 
55.7 f 52.5 
1.42 f 0.13 

5.8 f 2.2 
36.5 f 19.0 
1.41 f 0.08 

9.54 f 3.37 
20.7 f 10.1 
5.09 f 1-46 

4.3 f 2-1 
48.7 f 12.5 
5.56 f 1.23 

6.4 f 3.6 
70.9 f 21.5 
15.2 f 4.2 

1 5 f 6  
29.1 f 25.7 
2-27 f 0.1 1 

13.7 dz 5.0 
19.4 f 14.6 
2.34 f 0.24 

20.9 f 4.0 
20.7 f 7.1 
8.65 f 2-29 

24.2 f 3.6 
5.76 f 3.91 
2.18 f 1.05 

19.9 f 2.2 
55.7 f 7.0 
1.46 f 0.04 

0.252 f 0-141 

1.16 f 0.02 

1.18 f 0-96 
97.9 f 13.8 
1.14 f 0.06 

1.54 f 1.15 
40.6 f 3.7 
4-87 f 0.28 

0.211 f 0.162 
62.5 f 5.6 
5-12 f 0.28 

0.121 f 0.032 
53.4 f 14.4 
7.05 f 2.24 

2.58 f 1.35 
167 4 73 

2.72 f 0.30 

2.42 f 1.57 
7 6 f  10 

3.4 f 0.3 

10.1 f 2.2 
25.1 f 3.8 
5.4 f 1.2 

14.7 f 2.1 
25.7 f 4.8 
2.38 f 0.30 

157 f 4 

6.31 f 5-26 
37.5 f 14.3 
1.53 f 0.05 

0.0775 f 0.0179 
152 f 18 

1.19 f 0.06 

0.0795 f 0.0054 
96.3 f 11.8 
1.15 f 0.04 

0.101 f 0.021 
25.9 f 7.8 
3.61 f 0.60 

0.108 f 0.01 1 
43.5 f 8.3 

4.861.56 

0-0785 f 0.0137 
22.1 f 4-7 
1.57 f 0.80 

0.146 f 0-171 
79 f 86 

2-51 f 0.39 

0.107 f 0,113 
30.3 f 18.7 
2.67 f 0.43 

1.54 rt 2.03 
32.6 f 11.9 
5.62 f 2.41 

2.14 f 3.17 
29 f 7 

2.4 f 30.53 

SPM, suspended particulate matter; Chl a, chlorophyll a. 

however, showed only a modest improvement over 
proportional allocation for salinity, and was slightly 
worse in the case of chlorophyll u and SPM. 

Systematic sampling performed better than strati- 
fied random sampling with as few as 10 stations, 
although the large standard deviations imply that 
results were highly transect dependent (Table 5). As 
the sample size increased, the precision of systematic 
sampling, increased and exceeded even stratified ran- 
dom sampling with optimal allocation using only 20 
stations. Stratified systematic sampling was slightly 

better than simple systematic in the case of salinity but 
worse in the case of SPM, regardless of sample size. 
For chlorophyll, stratified systematic was sometimes 
better, sometimes worse. 

Vuriunce estimators 

The top three estimators, COCH, CHEV and GUND, 
were among those which attempted to account for 
spatial autocorrelation (Table 6). Estimator CHEV 
had an average ranking of 1.6, COCH 2.6 and GUND 
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TABLE 4. Sample sizes within strata expressed as a percentage of the total number of samples 

Optimal Allocation f SD 
Stratum Proportional Compromise 
no. allocation f SD Chlorophyll a SPM Salinity allocation + SD 

1 4.3 f 0.2 8.6 f 8.0 6.0 f 4.9 1.4 f 0.9 6.5 f 4.2 
2 14.5 j, 0.5 17.0 f 11.5 11.2 f 7.4 9-2 iz 5.0 13.1 f 5.1 
3 17.8 f 0.6 23.5 f 15.9 5.8 f 4.4 14.7 f 8.0 15.6 f 8.1 
4 23.1 f 0.9 22.3 h 12-7 32.1 f 14.6 54.1 f 15.9 34.1 f 5.0 
5 8.1 f 0-5 3.9 f 2.5 6.5 f 2.9 5.6 f 3.5 5.1 f 1.4 
6 32.2 f 1.0 24.7 i 13.9 38.4 f 12.8 15.0 f 23.7 25.6 f 13.4 

SPM, suspended particulate matter. 
The standard deviations represent variation among transects. 

4.0. The next best estimators were KOOP and The relative standard error of the median transect is 
M H A ,  which base their estimates on two subsamples almost always less than 10% when stations are spaced 
of equal size. The estimator SRS, which treats the up to 8 km apart (Figure 8). 
sample as if it were a simple random sample, is highly 
inefficient; it came in last in every instance. Discussion 

Sample size 

Fits of the inverse power relationship separately to 
each variable and transect (Equation 1 1 )  resulted in a 
narrow range of a averaging 1-9 k 0-1 (SE) (Figure 6). 
No significant effects of either variables or transects 
were found. For theoretical reasons discussed below, 
the ability of an inverse square curve to fit all data 
simultaneously was examined. The resulting fits each 
appeared to be a satisfactory description of the data 
(Figure 7). 

Horizontal strata3cation of the estua y 

Horizontal stratification of an estuary, i.e. division of 
the estuary into subdomains, can be motivated by 
many different goals: 

(1) The need for precise estimates of estuary-wide 
statistics such as the overall mean was the authors’ 
primary motivation. As discussed above, if the estuary 
can be divided into subdomains that are relatively 
homogeneous compared to the between-subdomain 
variability, then estimates of the overall mean will be 
more precise than for a simple random sample. These 

TAE~LE 5. Percent decrease in varQ compared to simple random sampling for different types of 
sampling strategies 

Sampling type Chlorophyll a f SD SPM f SD Salinity k SD 

Stratified random 
Proportional 
Optimal 
Compromise 

Systematic 
Stratified systematic 

Systematic 
Stratified systematic 

Systematic 
Stratified systematic 

n= 10 

n=20 

n=40 

65.4 f 19.9 
75.1 f 15.6 
63.5 f 23.8 

70.8 f 24-0 
66.6 f 32.7 

78.3 f 11.2 
84.1 f 9.2 

86.7 ?c 10.3 
91.8 f 4.2 

73.1 f 10.1 
79.3 f 9.5 
72.4 f 12.0 

86.6 + 15.3 
82.8 f 9.0 

93.1 f 6.1 
91.0 f 4.6 

95.2 f 5-6 
94-4 jl3.0 

93.4 f 2.0 
96.4 f 1.1 
94.6 f 2.2 

95.7 f 1.1 
96.9 f 1.2 

97.4 f 1.3 
98.4 f 0.6 

99.2 f 0.4 
99.2 f 0.3 

SPM, suspended particulate matter. 
The standard deviations represent Variation among transects. 
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TABLE 6. Ranking of estimators in Table 1 based on their MSE (Equation 10) for MIDAS transect 
data 

Chl a SPM Salinity 

Estimator n=10 n=20 n=40 n=10 n=20 n=40 n=10 n=20 n=40 

SRS 11 11 11 11 11 11 11 11 11 
MURTl 9 9 8 9 9 9 9 9 9 
MURT2 10 10 10 10 10 10 10 10 10 
WOLTl 7 6 6 8 8 7 5 4 5 
WOLT2 6 7 7 7 6 6 8 3 6 
WOLT3 8 5 9 6 7 8 7 5 7 
KOOP 1 4 3 2 4 4 4 8 8 
COCH 4 3 2 4 2 3 1 1 3 
CHEV 3 1 1 1 1 1 2 2 2 
GUND 2 2 4 5 5 5 3 6 4 
MAHA 5 8 5 3 3 2 6 7 1 

n, size of systematic sample. 
SPM, suspended particulate matter; Chl a, chlorophyll a. 

results show that stratification is very effective in 
improving precision over simple random sampling. 
Stratified random sampling, however, is inferior to 
simple systematic sampling with as few as 10 samples. 
Moreover, stratified systematic sampling offers no real 
improvements over simple systematic sampling. The 
authors’ conclusion that horizontal stratification is 
ineffective refers specifically to this context. 

(2) Administrative convenience can be a valid 
reason when, for example, different sampling methods 
are required for different habitats of an estuary (e.g. 
shoals vs channels). 

I 

1.0 1.5 2.0 2.5 3.0 
Power 

FIGURE 6. Histogram of values for the inverse power a in 
Equation 11. Each individual value is the result of fitting 
Equation 11 to the data for a single variable (salinity, 
suspended particulate matter or chlorophyll a and transect. 

(3)  Stratification may also proceed along political 
boundaries, particularly when the issue is one of 
compliance with government regulations. 

(4) Division into subdomains can also be motivated 
by the need to understand underlying causal mecha- 
nisms, in which case one might want to stratify on the 
basis of covariability of different spatial locations in 
time. In fact, previous research on the San Francisco 
Bay-Delta has clearly shown how different (over- 
lapping) spatial subdomains can be identified with 
separate causal mechanisms through the use of rotated 
principal component analysis, a regionalization pro- 
cedure common in meteorology gassby & Powell, 
1994; Cloem & Jassby, 1995). 

Tree-based regression is one of many approaches to 
the problem of grouping objects (in this case, loca- 
tions) into subgroups according to their similarity. 
Legendre (1987) has reviewed a number of these 
other techniques, some similar to tree-based regres- 
sion, that respect spatial contiguity, i.e. that give 
weight to proximity in space as well as to similarity in 
magnitude. Several features of tree-based regression 
attracted us originally. First, by operating through a 
binary recursive partitioning, it automatically pre- 
serves spatial contiguity within subdomains. Second, 
although not so much a consideration in this study, it 
can be applied to higher-dimensional data. Finally, it 
is easily shown that the criterion used by tree-based 
regression to choose splits (Equation 1) is equivalent 
to maximizing: 
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FIGURE 7 .  Variance (relative to maximum value) plotted against systematic sample size for each cruise (1-10) and variable. 
The lines are fitted inverse square curves. SPM, suspended particulate matter. 
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FIGURE 8. Relative standard error of the estimated transect 
mean from systematic samples as a function of the inter- 
station distance. The boxplot for each distance represents 
the variability among transects. The interior horizontal line 
marks the median; the lower and upper box boundaries 
mark the first and third quartiles, respectively; the vertical 
lines extend to all points within 1.5 times the interquartile 
distance; more extremc points are shown by horizontal lines 
standing alone. SPM, suspended particulate matter. 

which is the difference in the variances for simple 
random sampling and stratified random sampling with 
proportional allocation (Cochran, 1977). In other 
words, at each iteration, tree-based regression chooses 
the split that maximizes the benefits of stratified 
sampling. 

The performance of tree-based regression may 
sometimes appear disappointing, specifically in the 
presence of strong gradients (e.g. the salinity panel in 
Figure 4); boundaries are laid down at apparently 
arbitrary locations on the gradient that have no distin- 
guishing features. This behaviour, however, reflects 
the fact that the estuary often does not fit the implicit 
model of comprising homogeneous subdomains. Simi- 
lar behaviour would be found with other techniques 
that partition to minimize the within-subdomain varia- 
bility. In fact, tree-based regression was actually very 

effective in guiding the authors' choice of stratum 
boundaries, considering that the resulting stratified 
sampling estimate decreased the variance of the esti- 
mated mean by 73 to 97% (Table 5).  Note, however, 
that tree-based regression may not be appropriate for 
identifying subdomains in other contexts; as pointed 
out above, it fails to isolate transitional subdomains, 
tending to split them instead. 

Sampling design 

Despite the efficacy of stratified sampling, systematic 
sampling almost always yields a higher precision, 
regardless of the method of sample allocation for 
stratified sampling (Table 5). In theory, the relative 
performance of the different sampling designs depends 
on the properties of the underlying population 
(Cochran, 1977; Murthy & Rao, 1988). If the popula- 
tion is completely randomly arranged, systematic sam- 
pling is no better than simple random sampling. For a 
population dominated by a linear trend, stratified ran- 
dom sampling is the most efficient. For a population 
varying periodically in space, performance of the sys- 
tematic sample depends on the interstation interval: if 
the sampling interval is divisible by the wavelength, 
estimates will be highly inefficient; on the other hand, if 
the sampling interval is an odd multiple of half the 
wavelength, estimates will be highly efficient. For 
populations with just serial correlation, the results de- 
pend on the nature of the spatial covariance structure. 
For example, Hajek (1 959) extended the earlier results 
of Cochran (1 946) to show that, in the case of station- 
ary populations, systematic sampling minimizes the 
variance of the sample mean as long as the spatial 
correlation function is positive, decreasing and convex. 

The study transects do not fall clearly into any of 
these ideal categories. Many of the features of the 
large-scale variability are clearly related to large-scale 
structural aspects of the estuary basin, such as the 
transition from the narrow Carquinez Strait to open 
San Pablo Bay in the vicinity of Mare Island or the 
shallow expanse of the San Bruno Shoal in the south- 
ern Bay (Figures 3 and 4). The large-scale variability, 
therefore, is most properly treated as a ' deterministic ' 
spatial trend. In more confined reaches or on smaller 
scales, many of the aforementioned special cases may 
apply. For example, a linear trend in fluorescence 
occurs on the 10-km scale between San Bruno Shoal 
and the Dumbarton Bridge (Figure 3), while station- 
ary time series models incorporating serial correlation 
appear to be appropriate for this series on the 
scale 1 km and smaller. These results, therefore, 
demonstrate the robustness of systematic sampling for 
a range of spatial variability types found in estuaries. 
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Note that a stratified systematic design offers only 
modest improvements at best, and sometimes even 
worse precision than unstratified systematic sampling 
(Table 5). As the systematic samples for different 
strata are chosen independently, stations from differ- 
ent strata may fall very close together near boundaries 
between strata and provide redundant information, 
also a failing of both the simple and stratified random 
design. The improvements are too modest to warrant 
the additional complications of stratified systematic 
sampling. 

Variance estimators 

The variance estimators with the lowest MSE (Equa- 
tion 10)-COCH, CHEV and GUND-are those 
specifically devised to account for spatial autocorrela- 
tion in the population (Table 1). Estimator CHEV is 
recommended on the basis of its empirical perform- 
ance; interestingly, it was designed specifically for 
linear systematic samples (Chevrou, 1976) and the 
results here attest to the success of that design. Esti- 
mator COCH would also be a good choice. It is one 
devised by Cochran (1 946) for stationary populations 
with an autoregressive structure of order one, equiva- 
lent to an exponential correlogram or variogram. As 
discussed below, the correlograms commonly encoun- 
tered in these data are in fact exponential. Wolter 
(1984) observed that this estimator had remarkably 
good properties for artificial populations that are 
dominated by linear trends or autocorrelation. On the 
other hand, it was found that treating the systematic 
sample as if it were a simple random sample (SRS) 
leads to a poor estimate of the variance. Note also that 
MURTl and MURT2 turned out to be relatively 
inefficient for these estuarine data, in contrast to their 
superior performance for demographic data (Wolter, 
1984). 

Sample size 

The relation between variance of the mean and 
sample size is well described by an inverse power law 
with an average power of 1.9 f 0.1 and more than 
80% of the cases occur in the range 1.5-2.5 (Figure 
6). It can be shown that the power is related to the 
nature of the variogram (Simard et al., 1992). Let n 
systematic samples be taken along the transect dis- 
tance T, so L=TIn is the distance between samples. 
Suppose for distances h up to L, the variogram has the 
form: 

y(h)  = chb, with 0 I b c 2 

where c is a constant. Then one 
one-dimensional case (namely, a 
Marcotte, pers. comm.): 

Now in the case of exponential, 

can derive for the 
transect) that (D. 

linear or spherical 
variograms (Isaaks & SGvastava, 1989), provided that 
the range is much larger than L, b = 1 and an inverse 
square law would be expected. For Gaussian vario- 
grams, which have parabolic as opposed to linear 
behaviour near the origin, b=2, and for a nugget 
effect, b=O, so that a different power law would hold 
in these cases. The present finding of an inverse 
square law is therefore in agreement with past studies 
of spatial correlation in San Francisco Bay, which 
have demonstrated the presence of exponential spatial 
correlation (Powell et al., 1986). 

How widely can the inverse square relationship be 
applied to other systems? Based on the above argu- 
ments, this question can be rephrased by asking how 
representative are variograms with linear behaviour 
near the origin (i.e. linear, exponential and spherical 
variograms). A nugget effect has been observed for 
water quality variables in both estuarine (Legendre & 
Trousellier, 1988; Legendre et al., 1989; Simard et al., 
1992) and coastal waters (Denman & Freeland, 1985; 
Yoder et al., 1987). The shapes of the variograms, 
however, were usually exponential or at least compat- 
ible with an exponential shape where the resolution 
was too poor to be certain. Furthermore, the nugget 
effect may represent sampling error and not be an 
inherent feature such as high short scale variability 
(Isaaks & Srivastava, 1989); with more precise 
measurement techniques, the nugget effect could 
weaken or disappear, Nonetheless, the evidence from 
estuaries on variogram shape is sparse. Parabolic 
behaviour has been observed, moreover, in at least one 
other tidal estuary; North Inlet, South Carolina 
(Childers et al., 1994). Based on the existing evidence, 
an inverse square law cannot therefore be assumed for 
other estuaries, and the actual power could lie 
between 1 and 3 .  There is clearly a need here for 
expanding the empirical knowledge of estuarine 
spatial autocorrelation. Theoretical investigation of 
the link between the variogram or correlogram and 
underlying physical and biological processes could 
also help resolve the generality of any sampling design. 

Where high-resolution data such as the MIDAS 
data are not available, it may be possible to take a 
geostatistical approach both to the variance estimate 
and the relation between precision and sample size. 
Based on a model of the underlying spatial auto- 
correlation, i.e. the variogram, kriging methodology 
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provides optimal point or global estimates, including 
the precision of the estimates. It has been widely used 
in ecology (Rossi et nl., 1992) and sometimes applied 
to estuaries (Simard et aE., 1992). It can also be used 
to generate an empirical reIation between variance and 
sample size (Burgess et 81; Oliver & Webster, 
1991). A number of ~ m p o ~ ~ t  conditions must be 
satisfied, however, and as many as 200 stations may be 
required to properly deiine the variogram for kriging 
(Oliver & Webster, 1991f, much larger than the 
number of stations typically constituting an estuarine 
sampling programme. ~~~ too few points, it may be 
impossible to resoive ~ ~ ~ a ~ o u ~  near the origin and 
variance estimates can then be unreliable (Thioulouse 
et al., 1993). In that case, the variance estimator 
suggested by this stuclv es a useful alternative, 
although how to scale riance for different sample 
sizes will remain UEC out knowledge of the 
variogram shape. 

Despite the central ~ ~ p o r t a ~ c e  of the mean for both 
theoretical and p~ac~ical ~ ~ a ~ ~ n ~ ~  as pointed out in the 
Introduction, it- is not the most relevant statistic for 
many water quality t7ariables. In the case of pollutant 
indices such as fecal coiifoms, for example, the pro- 
portion of the population exceeding some specific 
level is the characteristic of interest. A global mean 
that falls within sani idelines may disguise 
locally importanr warer quality problems. Further 
work should, therefore, consider not only how to 
generalize these results regarding regional means to 
other estuaries, but also  he need for similar analyses 
on other population statistics such as quantiles. 

The results of this study provide guidelines for esti- 
mating estuary-wide means with low-resolution data 
from fixed stations. Given any desired precision for 
the estimate, the first step is to take systematic 
samples with as many stations as practical. Next, the 
estimator CHEV or COCH (Table 1) is used to 
calculate the variance of each sample, which will of 
course vary somewhat from transect to transect even 
when the number of stations is constant (Figure 8) .  
Finally, the desired station number is determined 
from the typical or characteristic variance found in the 
previous step, the target variance, and the inverse 
power relation between variance and sample size. At 
present, the actual value for the power must come 
from prior knowledge of the variogram or correlogram 
shape or, if enough stations are used, by calculating 
the variogram from the initial array of stations. Fur- 
ther research may reveal some general rules for deduc- 

ing variogram shape or this power from features of 
estuarine dynamics that can be observed with fewer 
stations. 
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